Dietary Minerals

Minerals are chemical elements that come from the earth. Plants absorb essential minerals through their roots, deficiency in the soil will stunt plant growth just like dietary deficiency will damage human health.

They say that diamonds are a girl’s best friend, but while the hardest mineral known to man does provide some serious bling, it is not an essential component in any vital human function… just don’t tell your girlfriend you heard it from me.

There are roughly 30 minerals known for their use in human biology, of those elements these 11 essential minerals are critical in maintaining bodily functions and must be consumed from dietary sources to maintain efficient nutrient levels.

Dietary minerals work in close association with enzymes across all major systems in the body, for optimal utilization of these nutrients pair protein consumption with foods rich in these essential minerals. See: Proteins for an overview of enzyme functions.

Calcium

The most abundant mineral in the human body, serving as a component in bone structures. Calcium promotes nerve transmission and hormonal secretion, supports cardiovascular and digestive system functions, and regulates acid/alkaline balance.

  • Kale
  • Sardines
  • Yogurt and milk
  • Watercress
  • Cheese (mozzarella, parmesan, swiss, cheddar)
  • Bok choy
  • Tofu
  • Broccoli
  • Okra
  • Almonds

For optimal absorption, pair Calcium with foods rich in Magnesium and Vitamin D. Magnesium and Vitamin D promote absorption of Calcium in the bloodstream and reduce excretion in urine. If levels of available Calcium in the blood are low, Vitamin D will pull the required nutrients out of bones to compensate. To preserve bone health, increase Calcium intake when consuming Vitamin D in excess.

Potassium

Serves as an electrolyte to promote chemical and electrical impulses in the body, maintains hydration by balancing with fluid levels. Regulates blood pressure, balances acidity in the blood and protects from kidney damage. Potassium is essential for maintaining cardiovascular and neuro-muscular functions.

  • Beans (white/navy, soy, lima)
  • Potatoes and sweet potatoes
  • Bananas
  • Avocado
  • Chard
  • Spinach
  • Apricots
  • Salmon and clams
  • Acorn squash
  • Artichoke

Sodium is required to carry out most potassium-dependent functions, including the regulation of ATP reactions for muscle contraction, but excess sodium will wreck havoc on the cardiovascular system. For optimal utilization of these minerals, increase potassium to sodium ratio and drink plenty of fluids.

Iron

Required for production of hemoglobin and myoglobin in red blood cells, used to transport oxygen throughout the bloodstream. Iron supports healthy growth and metabolism, maintains cellular function and hormonal production, and regulates conversion of calories for use as energy.

  • Organ meats, particularly chicken liver
  • Dark chocolate
  • Spirulina
  • Squash and pumpkin seeds
  • Shellfish, salmon and sardines
  • Nuts (pine, cashew, hazelnut, peanut, almond, pistachio)
  • Beef and lamb
  • Beans (white/navy, lentil, kidney, garbanzo, lima, black, pinto)
  • Spinach and chard
  • Quinoa, oats and rice

For optimal absorption, pair with foods rich in Copper, Vitamin C and Vitamin D. Copper promotes absorption of Iron and aids in production of red blood cells. Iron deficiency can lead to the most common form of anemia.

Magnesium

Stored primarily as a component in bone structures. Regulates enzyme functions, required for processing ATP in nerve impulses and muscle contractions. Magnesium is essential in protein synthesis, neuro-muscular function, and blood glucose regulation for energy production.

  • Spinach and chard
  • Seeds (sesame, squash and pumpkin)
  • Mackerel
  • Yogurt
  • Nuts (brazil, almond, cashew, pine)
  • Beans (soy, white/navy, kidney, garbanzo, lentil, pinto)
  • Quinoa and brown rice
  • Avocado and artichoke
  • Figs, prunes, apricots and bananas
  • Dark chocolate

Magnesium promotes production of thyroid hormones, regulating absorption of Calcium in the intestines and excretion in urine. For optimal utilization of these nutrients, pair Magnesium with foods rich in Calcium and Vitamin D.

Copper

Co-factor required for enzymes that catalyze oxidation-reduction reactions, protects the nervous system from damage by free-radicals. Minor component required to synthesize the structural protein collagen found in bones and blood vessels. Copper maintains healthy cardiovascular, neurological, immune and skeletal system functions.

  • Oysters, squid, octopus, lobster and crab
  • Raw kale, turnip greens, avocado and asparagus
  • Organ meats, particularly beef liver
  • Mushrooms
  • Seeds (sesame, sunflower, flax, squash and pumpkin)
  • Beans (soy, kidney, white/navy, garbanzo, lentil)
  • Nuts (cashew, hazel, brazil, walnut, pine, pistachio, almond)
  • Prunes, apricots, peaches, raisins and figs
  • Tempeh, soy products and goat cheese
  • Dark chocolate

Copper aids in Iron absorption, working with Iron in production of red blood cells and cellular metabolism of carbohydrates for use as energy. For optimal utilization of these nutrients, pair Copper and Iron consumption.

Iodine

Promotes production of hormones in the thyroid. Iodine supports energy production, healthy growth and metabolism. Both deficiency and excess consumption of Iodine can lead to hormonal imbalances.

  • Sea vegetables
  • Cod, shrimp and tuna
  • Yogurt
  • Raw milk and cheese
  • Potatoes
  • Beans (White/navy and lima)
  • Eggs
  • Turkey
  • Cranberries
  • Strawberries

Manganese

Co-factor required for enzymes used in thyroid hormone production, metabolism of amino acids and carbohydrates, and bone building. Essential component in synthesis of the structural protein collagen, serves as an antioxidant in skin cells to protect from damage by free-radicals and UV rays. Manganese maintains healthy bone density, neurological functions, and blood sugar levels.

  • Mussels, clams, crayfish, bass, trout, pike and perch
  • Herbs (cloves, cinnamon, black pepper, tumeric, garlic, basil, cumin, oregano, thyme, dill, parsley)
  • Greens (spinach, collards, beet greens, chard, kale, turnip greens, sea vegetables, bok choy, brussels sprouts, broccoli, asparagus, cauliflower)
  • Nuts (hazel, pecan, walnut, macadamia, almond, cashew, pistachio, peanut)
  • Seeds (squash and pumpkin, chia, sesame, flax, sunflower)
  • Fruit (pineapple, raspberries, strawberries, blueberries, cranberries, bananas, kiwi)
  • Soy products (tofu, tempeh, soybeans, miso)
  • Beans (lima, lentils, garbanzo, white/navy, kidney, pinto, black, peas, green beans)
  • Grains (teff, oats, rice, quinoa, barley, rye, whole wheat, millet)
  • Black tea

Molybdenum

Co-factor for enzymes that detoxify harmful substances, catalyze antioxidant reactions, and aid in connective tissue development, primarily by regulating sulfur balance in the body. Molybdenum maintains brain and nervous system functions, serving as a co-factor for enzymes that regulate the breakdown of adrenaline, noradrenaline, serotonin and melatonin neuro-transmissions.

  • Beans (lentils, peas, lima, kidney, soy, black, pinto, garbanzo)
  • Oats
  • Tomato and cucumber
  • Romaine lettuce
  • Celery
  • Barley
  • Eggs
  • Carrots
  • Bell peppers
  • Peanuts, walnuts, almonds and sesame seeds

Essential for maintaining sulfur balance, for optimal utilization of these nutrients, pair sources sulfur-containing amino acids with foods rich in Molybdenum.

Phosphorous

The second most abundant mineral in the human body, serving as a critical component in bone and cell structures, required for synthesis of ATP, DNA and RNA. Regulates acid-base balance, energy processing, metabolism of fats and carbohydrates, and vital cellular functions. Phosphorous is essential in protein synthesis for growth, maintenance, and repair of cell tissues.

  • Seeds (squash and pumpkin, sunflower, chia, sesame, watermelon, flax)
  • Cheese (romano, parmesan, goat, mozzarella, swiss)
  • Salmon, carp, cod, tuna, shrimp and mackerel
  • Scallops, sardines, clams, shrimp, mussels and crab
  • Mushrooms, broccoli, spinach, asparagus, brussels sprouts, beet greens, chard, bok choy, turnip greens and cauliflower
  • Nuts (brazil, pine, almond, cashew, pistachio)
  • Meats (turkey, chicken, pork, beef, veal)
  • Yogurt and milk
  • Soy products (tofu, tempeh, soybeans, edamame)
  • Beans (lentils, white/navy, garbanzo, pinto, kidney)

For optimal absorption, pair with foods rich in Vitamin D.

Selenium

Co-factor for enzymes that aid in detoxification and oxidation-reduction.

  • Nuts (brazil, cashew, walnut, macademia)
  • Oysters, scallops, mussels, lobster, clams, squid and shrimp
  • Tuna, shrimp, salmon, cod, rockfish, swordfish, halibut, tilapia, mackerel and sardines
  • Grains (whole wheat, brown rice, quinoa, barley, oatmeal)
  • Seeds (sunflower, chia, sesame, flax, squash and pumpkin)
  • Pork, beef, lamb, turkey, chicken and tofu
  • Organ meats, particularly beef liver
  • Eggs
  • Spinach, asparagus, broccoli and chard
  • Mushrooms

Selenium works with Iodine to maintain healthy hormonal production in the thyroid, pair consumption of these nutrients for optimal utilization. Vitamin C and Vitamin E can supplement as antioxidants, but deficiency in all three can leave the body susceptible to damage by oxidation.

Zinc

Serves as a co-factor for enzymes that support neurological and immune system functions, promote sensory impulses, and maintain healthy skin.

  • Oysters, crab, lobster and shrimp
  • Beef, lamb, pork, chicken, turkey and tofu
  • Greens (spinach, asparagus, beet greens, broccoli, chard, brussels sprouts, bok choy)
  • Mushrooms
  • Seeds (squash and pumpkin, sesame, watermelon)
  • Dark chocolate
  • Garlic, wheat germ and sea vegetables
  • Beans (garbanzo, kidney, lentils, peas)
  • Nuts (cashew, pine, pecan, almond, hazel, walnut, peanut)

For optimal absorption, pair with foods rich in Vitamin D.

Proteins

The phrase “you are what you eat” coined by nutritionist Victor Lindlahr in the 1920s has etymological roots dating as early as the 1800s in French and German sources. This idiom has endured through the 1960s hippie movement and into modern catch-phrasing, serving as an accurate illustration of the effects of dietary nutrition on our bodies. When we digest food, we absorb essential nutrients to supplement elements that our bodies cannot synthesize efficient levels of.

In the case of dietary proteins, this phrase can be taken literally, but preferably not in the way Hannibal Lector interpreted it. Proteins are the building blocks of every cell in every structure of the human body, serving as critical components in all vital bodily functions.

All proteins are coded by a unique chain of amino acids. With 21 different amino acids appearing in human genetics, and some proteins boasting a peptide chain sequence over 20 thousand amino acids long… the protein possibilities are incalculable. Different types of proteins serve different purposes in the body, consuming protein in excess may still result in deficiency of particular amino acids. To ensure optimal intake of these nutrients, protein should be consumed from a variety of natural sources.

See: Amino Acids for a breakdown of these specific protein components and where to find them.

Structural Proteins


Fibrous proteins that act as the building blocks of the body.

  • Collagen– in muscles, cartilage, skin, tendons and bones.
  • Keratin– in skin, hair, teeth and nails.
  • Elasticin-– in blood vessels, tendons and ligaments.

Storage Proteins


Store mineral ions and amino acids for use in essential body functions. High concentrations found in gluten, seeds and legumes.

Ferratin

Stores Iron and protects from adverse effects. Iron is a component of hemoglobin in red blood cells, and in cytochromes responsible for cell metabolism.

Casein

Found in mammalian milk, stores Calcium, Phosphorous, carbohydrates and amino acids for embryonic development.

Ovalbumin

Found in eggs, stores amino acids for embryonic development. When metal ions reach toxic levels in the blood, ovalbumin can prevent absorption in the GI tract.

Hormones


Produced in endocrine glands and transmitted through the bloodstream, humans secrete and circulate about 50 major hormones that act as chemical messengers between cells.

For a comprehensive breakdown of hormones in the human body, see: Hormone Table by Professor John W. Kimball, Harvard PhD.

Insulin

Produced in the pancreas, regulates blood sugar and metabolism of carbohydrates, fats and proteins. Inefficient production or utilization of insulin can lead to various forms of diabetes.

Dopamine

Derived from the amino acid tyrosine, precursor of epinephrine / adrenaline. Dopamine functions as a neurotransmitter in the brain, and acts as a local chemical messenger in digestive, circulatory and immune systems.

Norepinephrine / Noradrenaline

Primarily functions as a neurotransmitter, produced continuously in brain-stem nuclei that respond to stress and panic. Small amounts of noradrenaline are also produced as a hormone derived from dopamine in adrenal glands associated with the kidneys. Increased noradrenaline activity acts on alpha receptors to constrict blood vessels, restrict passage in urinary and GI tracts, enlarge pupils, and excite hair follicles. Alpha receptors are located primarily in smooth vascular muscles where sensitivity to noradrenaline promotes insulin production in the pancreas, increases conversion of blood glucose into energy, and increases blood pressure.

Epinephrine / Adrenaline

Produced in the adrenal medulla as a hormone derived from noradrenaline, production only occurs under stress. Similar to noradrenaline, increased production of adrenaline acts on alpha receptors to promote insulin production, increase conversion of blood glucose into energy, and increase blood pressure. Adrenaline also acts on beta receptors to promote glucose production in the pancreas, increase hormonal production in the pituitary gland, and increase breakdown of fats. Adrenaline is commonly administered in cases of severe allergic reaction to prevent anaphylactic shock.

Melatonin

Produced in the pineal gland, regulates sleep and circadian rhythm.

Serotonin

Derived from the amino acid tryptophan, produced primarily in the GI tract to facilitate intestinal movements. Serotonin also acts as a neurotransmitter to regulate sleep, appetite, mood and cognitive functions. Ascorbic acid is a required component in serotonin, to promote production of this hormone pair proteins with foods rich in Vitamin C.

Estrogens and Androgens

Produced in the ovaries or testes, regulate reproductive functions.

Enzymes


Serve as catalysts for chemical reactions that speed up metabolic processes in all systems of the body. Essential minerals are required as co-factors in order for many of these reactions to occur. Coenzymes are a co-factors that separate from the protein component of the enzyme to serve as catalysts and transfer components between enzymes. Vitamins are often required in the formation of coenzymes.

Digestive Enzymes

Essential in metabolic processes, humans rely primarily on four categories of digestive enzymes to break down food into functional components and excrete waste:

Amylolytic

Enzymes that convert complex carbohydrates into simple sugars. Salivary amylase, activated by chewing, converts complex carbohydrate starches to the disaccharide sugar maltose. Pancreatic amylase, secreted into the small intestine, continues the digestion of carbohydrates into the simple sugar glucose.

Proteolytic

Enzymes that convert proteins into amino acids. Pepsin, a proteolytic enzyme produced in the stomach, breaks proteins down to short-chain poly-peptides when activated by glutamic acid in the stomach. Trypsin, released from the pancreas into the small intestine, completes protein digestion by breaking proteins and poly-peptides down further to amino acid components.

Lipolytic

Enzymes that convert dietary fats into glycerol and fatty acids. Gastric lipase, produced in small amounts in the stomach, aids in digestion of fats from butter. Pancreatic lipase, secreted into the small intestine, completes digestion of dietary fats by converting to fatty acids and glycerol.

Nucleolytic

Enzymes that convert nucleic acids into sugars, bases and phosphates. Produced in the pancreas, nucleases break DNA and RNA down into nucleotides for further digestion in the small intestine.

Other Digestive Enzyme Functions
  • Maltase and Sucrase— produced in the small intestine, break down specific sugars into glucose.
  • Lactase— produced in the small intestine, breaks down the specific milk sugar lactose into glucose and galactose.
  • Renin— produced in the stomach, breaks down milk proteins by converting to peptides, to be fully digested by pepsin.
  • Gelatinase— produced in the stomach, breaks down gelatin and collagen, to be fully digested by pepsin and trypsin.

Defensive Proteins


Antibodies

Proteins produced in white blood cells, carry out core functions of the immune system.

Transport Proteins


Carry ions, molecules and macro-molecules across cell membranes for essential functions.

Channels

Facilitate selective diffusion across cell membranes in passive transport from areas of high-concentration to areas of low-concentration.

Carriers

Bind with specific ions and molecules to facilitate active transport across the cell membrane from areas of high-concentration to areas of low-concentration.

ATPases

Catalyze breakdown of ATP, releasing energy to facilitate active transport across cell membranes from areas of low-concentration to areas of high-concentration.

Receptors


Receive and respond to chemical signals for regulation of substances entering and leaving cells, activation of enzymes, and stimulation of glands.

  • Transmembrane– ion channel-linked (ionotropic) receptors, G protein-linked (metabotropic) hormone receptors, and enzyme-linked hormone receptors.
  • Intracellular– found inside the cell, include cytoplasmic receptors and nuclear receptors.

Genetically designated molecules that bind to specific receptors are known as ligands.

Acetylcholine Receptors

Acetylcholine Receptors (AChRs) receive the ligand Acetylcholine (ACh) to stimulate skeletal muscle contractions. ACh was the first known neurotransmitter, confirmed by Nobel Prize winner Otto Leowi. Acetylcholinesterase (AChE) facilitates the breakdown of ACh to terminate transmissions. In the nervous system ACh regulates muscle contractions, sensory perceptions, REM sleep, attention, memory, motivation, arousal and reward. Choline, a B-complex vitamin, is an essential component in ACh.

Muscarinic Acetylcholine Receptors (mAChRs) are metabotropic and can be excited by muscarine, found in the amanita-muscaria mushroom.

Nicotinic Acetylcholine Receptors (nAChRs) are ionotropic receptors that can be excited by nicotine, found in tobacco. When activated, these ligand-gated ion channels are permeable to the mineral ions Sodium, Potassium and Calcium. Stimulation of nAChRs in the adrenal medulla by ACh ligands triggers secretion of the hormones noradrenaline and adrenaline. The neuro-muscular autoimmune condition known as Myasthenia Gravis is characterized by degradation of nAChRs by autoantibodies (IgG1 or IgG3).

Contractile Proteins


Motor proteins regulate muscle, cardiac, and cellular movements.

Actin

Found in cell cytoskeletons, responsible for intracellular motor functions like cell division.

Myosin

Motor protein that catalyzes breakdown of ATP to generate movement, works with actin to facilitate muscle contractions.

Optimal Food Sources


Fish
  • Tuna
  • Salmon
  • Halibut
  • Octopus
  • Cod
  • Shrimp
  • Scallops
  • Sardines
  • Shellfish
  • Tilapia
Meat
  • Alligator
  • Ostrich
  • Wild Boar
  • Chicken
  • Turkey
  • Pheasant
  • Venison
  • Beef
  • Lamb
  • Pork
Animal Products
  • Eggs
  • Cottage Cheese
  • Greek Yogurt
  • Parmesan
  • Romano
  • Mozzarella
  • Goat Cheese
  • Swiss
  • Cheddar
  • Milk
Beans
  • Soybeans
  • Lentils
  • Peas
  • White/Navy Beans
  • Pinto Beans
  • Kidney Beans
  • Black Beans
  • Lima Beans
  • Garbanzo Beans
  • Green Beans.
Vegetables
  • Spinach
  • Asparagus
  • Artichoke
  • Collards
  • Beet Greens
  • Chard
  • Bok Choy
  • Broccoli
  • Kale
  • Cauliflower
Sprouts
  • Soybean Sprouts
  • Lentil Sprouts
  • Alfalfa Sprouts
  • Brussels Sprouts
  • Bean Sprouts
  • Green Gram / Mung
  • Bengal Gram Sprouts
  • Broccoli Sprouts
  • Radish Sprouts
  • Clover Sprouts
Nuts and Seeds
  • Squash Seeds
  • Pistachios
  • Almonds
  • Sunflower Seeds
  • Sesame Seeds
  • Flaxseed
  • Hemp
  • Chia Seeds
  • Cashews
  • Walnuts
Miscellaneous
  • Tofu
  • Tempeh
  • Miso
  • Mushrooms
  • Potatoes
  • Spirulina
  • Sea Vegetables
  • Grape Leaves
  • Garlic
  • Wasabi Root